A Detailed Wedge-of-the-edge Theorem: Analytic Continuation of Multivariable Pick Functions in and around the Boundary
نویسنده
چکیده
In 1956, quantum physicist N. Bogoliubov discovered the edge-ofthe-wedge theorem, a theorem used to analytically continue a function through the boundary of a domain under certain conditions. We discuss an analogous phenomenon, a wedge-of-the-edge theorem, for the boundary values of Pick functions, functions from the polyupperhalf plane into the half plane. We show that Pick functions which have a continuous real-valued extension to a union of two hypercubes with a certain orientation in Rd have good analytic continuation properties. Furthermore, we establish bounds on the behavior of this analytic continuation, which makes normal families arguments accessible on the boundary for Pick functions in several variables.
منابع مشابه
Analytic Approach to Free Vibration and Buckling Analysis of Functionally Graded Beams with Edge Cracks using four Engineering Beam Theories
A complete investigation on the free vibration and stability analysis of beams made of functionally graded materials (FGMs) containing open edge cracks utilizing four beam theories, Euler-Bernoulli, Rayleigh, shear and Timoshenko, is performed in this research. It is assumed that the material properties vary along the beam thickness exponentially and the cracked beam is modeled as two segments ...
متن کاملCoefficient estimates for a subclass of analytic and bi-univalent functions
In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk. Upper bounds for the second and third coefficients of functions in this subclass are founded. Our results, which are presented in this paper, generalize and improve those in related works of several earlier authors.
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملUnsteady boundary layer flow of a Casson fluid past a wedge with wall slip velocity
In this paper an analysis is presented to understand the effect of non–Newtonian rheology, velocity slip at the boundary, thermal radiation, heat absorption/generation and first order chemical reaction on unsteady MHD mixed convective heat and mass transfer of Casson fluid past a wedge in the presence of a transverse magnetic field with variable electrical conductivity. The partial differential...
متن کاملSubordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015